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Position operators for the relativistic non-interacting 
n-particle system 

U Mutze 
Sektion Physik der Universitat Miinchen, Theresienstrasse 37, D-8000 Miinchen 2, West 
Germany 

Received 16 August 1977, in final form 6 December 1977 

Abstract. The subject under consideration is a system of n non-interacting particles with 
spin, being described by a tensor product of n unitary irreducible massive representations 
of the PoincarC group. A unitary transformation that effects a separation of centre-of-mass 
variables and internal variables is constructed. By means of this transformation, for any of 
the n particles there are constructed two position operators both acting on the internal 
variables only. The first of these operators (called the internal position) commutes with all 
spatial translations and with the centre-of-mass position, the second one (called the impact 
position) commutes moreover with all time translations. It is argued that the impact 
position may be interpreted as the internal position taken at the instant when the n 
particles are most closely together. By considering spatial separation properties, it is 
shown that both the internal position and the impact position of any particle depend 
essentially on the location of all particles of the system. 

1. Introduction 

In this paper we investigate the kinematics of a system of n non-interacting relativistic 
massive particles with arbitrary spin in the framework of (mathematically rigorous) 
quantum theory. In more detail, we derive a simple standard formt for a tensor 
product of n irreducible unitary representations of the (quantum mechanical) Poin- 
car6 group and thereby we are naturally led to the definition of two types of position 
operators that have easily understandable non-relativistic classical counterparts. 

Particularly, the ‘internal centre-of-mass (CM) position operators’ defined by 
Osborn (1968) for the two-body system are generalised for any finite number of 
particles resulting in operators Ri, j E (1, . . . , n}, that shall be referred to as internal 
positions. The author’s reason for being interested in these operators is that they can 
be used as dynamical variables in constructing PoincarB invariant model theories of 
directly interacting relativistic particles. The direct-interaction approach to relativistic 
particle dynamics that takes into account the dynamical degrees of freedom of par- 
ticles and ignores those of fields, originated with papers of Dirac (1949), Bakamjian 
and Thomas (1953)’ and Foldy (1961); later on, various considerably differing 
versions of this approach were discussed by several authors. More recent papers on 
the subject are, for instance, Foldy and Krajcik (1975)’ Coester and Havas (1976)’ 

?’ Steps towards this standard form were presented by Wightman (1960), in the proof of theorem 4.3, and by 
Chakrabarti (1964). 
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666 U Mutze 

and Mutze (1978). In the present paper, however, no applications to direct-interaction 
theory shall be discussed. 

Further, we introduce vector operators Qi the non-relativistic classical counter- 
parts of which describe the position of the jth particle relative to the CM taken at that 
instant at which the ‘mean diameter’ 2 & q r i  ) of the n-particle system (see (1.1) for 
the meaning of the symbols) attains its smallest possible value. Therefore, the Poin- 
car6 invariant operator F =4XjpjQj. Qj is expected to represent the square of some 
kind of ‘minimal mean diameter’ of the system. More precisely, the PoincarC invariant 
condition ($IF$) S d2($I$) is expected to be an appropriate mathematical formula- 
tion of the vague statement that $ represents a state of n freely moving particles that, 
at some instant, are approximately localised all together in the interior of a sphere of 
diameter d. If long-range forces are absent, the asymptotic final states resulting from 
decays and collisions should be such approximately localised states with a microscopic 
value of d. 

In order to motivate the subsequent relativistic constructions, we first discuss the 
non-relativistic classical counterparts rj and qi, j~ (1, . . . , n}, of the Ri and Qi 
mentioned above. Let the position, momentum, and mass of the jth of n free classical 
non-relativistic (spinless) particles be denoted respectively by xi, pi, and mi. The time 
dependence shall be displayed only if necessary. We introduce centre-of-mass and 
internal coordinates as follows: 

2 1/2 

P C Pi, 
mi F C p J j  with pi =-- 

i Ximi’ i 
k .  = ( l . l ) t  rj = xi - x, I - Pi - Pip- 

Obviously we have 

We note the Poisson bracket relations, which are trivial consequences of {x?, p ? }  = 
S&j, {x?, x ? }  = cp?, p ? }  = 0 :  

{r?, ka)=~ap(~ i j -~r j ) ,  {r?, r?} = {kP, k?} = 0, (1.3) 
{ X U ,  P S I  = SUS, 

{r?,  X S }  = {k?, XB} = {r?, p q  = {k?, p q  = 0. 

{ X U ,  x q  = (pa, p B }  = 0, (1.4) 

(1.5) 
The energy e and the angular momentum j may be expressed in terms of internal 
variables and CM variables as follows: 

e = k7/2mj +p2/2m with m C mj, (1.6) 
( i  ) i 

j = ( T r i x k i ) + x X p .  (1.7) 

t Unspecified sums and products always run from 1 to n. Equations that contain free Latin and (or) Greek 
indices should always be understood as stated for all values of these indices contained in the sets {l,  . . . , n }  
and {1,2,  3) respectively. 
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The time derivatives of the variables are given by 

k j  = 0 r .  I 1  = U. with uj = kj/mj, 

x = p/m, p = o .  

Therefore, the quantity 

(1.10) 

is a constant of motion. Let to be the value of this quantity. Then it is easily shown 
that the quantity 

(1.11) 

which is obviously a kind of diameter of the system, satisfies d ( t )  > d( to)  for all t # to,  
whenever the internal energy ei, = Z j  k;/2mj is different from zero. Roughly speak- 
ing, to is the instant at which the particles come most closely together. Therefore, let us 
call to the instant of impact. It should be noted that this notion refers to the n-particle 
system as a whole: any subset of particles may reach its state of closest approach, or 
may even collide, at another instant than that of (n-particle) impact. The internal 
position rj(to) of the jth particle ‘at impact’ shall be denoted by qj and shall be called 
the impact position of this particle. This quantity is obviously a constant of motion, is 
invariant with respect to spatial translations and Galilean ‘boosts’, and is a vector with 
respect to rotations. Hence, the quantities (qj -41)’ are Galilean invariants. From 
rj(to)= r j ( t )+(to-r)uj  we obtain by (1.8) and (1.10) 

Finally we note that the quantity 
-1 

T ( f  ) (1 kj r j ( f ) )  (1 kj U j )  = t - to ,  
I I 

(1.12) 

(1.13) 

which is the internal virial (the virial Zipi. xj may be written as a sum of a CM 
contribution p . x and an internal part Z j k j .  ri; to is just the instant at which the latter 
part vanishes) divided by twice the internal energy, is canonically conjugate to the 
energy: 

(1.14) {T ,  e} = {T ,  ei,} = 1. 

2. Mathematical description of the non-interacting relativistic n-particle system 

In this preparatory section, we collect some facts on the unitary continuous represen- 
tations (reps) of the PoincarB group B (cf the appendix). Any rep U of B determines 
the self-adjoint operators E (energy), P (momentum), J (angular momentum), and N 
(‘boost’) via Stone’s theorem by the equations 

U(a,  1) = exp(iaOE -ita. P), 
U(O, eiLm) = exp(2iu. J ) ,  U(O, eao) = exp(2iu. N). (2.1) 
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We shall be concerned only with reps of 9 for which the operators E and M 2 =  
E 2  - P 2  are positive and for which the spectrum of the mass operator M has a strictly 
positive lower bound. Such reps shall simply be called positive. Obviously, any tensor 
product of positive reps is positive, For positive reps, the operators S of spin and X of 
CM position are well defined and show the following property: there is a linear space 9 
such that: (i) for each member A of the set {E,E- ' ,M-' ,  (M+E)-' ,  
P", J", Nu,  X", S " : a  E {1,2,3}} of operators we have 9 c domain A, A 9  c 9, A is 
essentially self-adjoint on 9 ;  and (ii) we have the following equations on 9: 

with T =t(E-'N +NE-'), X = T - P X (J - T X P)M-'(M +E)-' 

N = I ( E X + X E ) + P x ( J - X x P ) ( M + E ) - ' ,  (2.2) 
S = J - X  X P. 

Let an irreducible positive rep U of 9 with mass m (i.e. M = m 1, m > 0) and spin s 
(i.e. S2 = s(s + 1)1, s E { O , &  1, . . . }) be given on a Hilbert space H. Then there is a 
unitary transformation V: H + L2(R3, CZs+l) (which, by Schur's lemma, is determined 
by U up to a phase factor) such that VUV-' = with 

(Um,s (a, A)llr)b) 
for all (a, A ) E  9, = eiP,"((A-'p)O/p 0 ) 1/2 D (s) (R(p, A))+(TvP(A-'~)) 

(2.3) 
where p is the four-vector (Po, p )  = ( (m2+p2)1'2,  p ) ,  D") is the unitary irreducible rep 
of SU(2) on CZsC', and TVP denotes the mapping that assigns to a four-vector q its 
three-vector part q ;  the Wigner rotation R(p, A) and the action of A E SL(2, C) on 
four-vectors are explained in the appendix. 

With a system of non-interacting distinguishable? particles with non-zero masses 
ml, . . . , m, and spins SI, , . . , S, there is associated a tensor product U = OiUj (cf the 
footnote to equation (1.1)) of irreducible positive reps, where Ui is (unitarily) 
equivalent to U,,,, (see (2.3)). Due to its tensor product structure, the rep U extends 
canonically to an irreducible rep 8 of the direct product group 9 X . . . x 9 ( n  times): 
O(g1,. . . , g , )=@jU, (g j )  for all (gl, . . . , g n ) E 8  X .  . . X 8 .  The operators 
Ej, Pi, 4, Ni, Xi, and Si referring to the jth particle are defined as in (2.1) with U 
replaced by the positive rep g- O ( l ,  . . , , 1, g, 1,. . . , 1) with g at the jth position. 
Let H = OiHi be the Hilbert space of U, then there is a unitary transformation 
V: H +L2(R3n, OiC2sfC1) (which is determined by 8 up to phase factor) such that 
V8V-l 3 0' is given by 

(U'(a1, A I ; .  * ; an, An)+)(p1' . , pn) 

= n eip~Q,((A~'pi)o/pi 0 ) 1/2 0 D(',I'(R(p,, A,)) 
i i 

X +(Wp(AT'pi), . . , lWA, 'pn)) .  (2.4) 
The essential tool for defining the operators we are concerned with in this paper is the 
well known 'transformation to the rest frame', which shall be described now. Defining 

K(")={(k1 , .  . . , k , ) E  R3n: k'+. . . +k, = 0) (2 .5 )  

t Since we shall treat all particles on equal footing, the inclusion of identical particles shall be possible in a 
straightforward manner. 



Position operators for free relativistic particles 669 

we introduce the mapping 

y :  R3" +K(")x R3, ?(pi, . . . , p , ) ,  (ki,. . . , k,, p ) ,  

where (kl, . . , , k,, p )  is given by the following chain of formulae: 

2 1 / 2  
p P = ( m ; + p i )  , Pi = (PP, Pi>,  P = c Pi? 

i 

where the matrix A b )  E SL(2, C )  is defined in the appendix. The mapping y is a 
bijection and y-l(k1, . . . , k,, p )  = ( p l ,  . . . , pn)  is given by 

(2.7) 

The physical meaning of the ki is obvious: let the four-momenta pi be measured in a 
Lorentz frame F, then ki is the four-momentum of the jth particle measured in a 
different Lorentz frame F' that is a rest frame in the sense that the total (three-) 
momentum of the particle system is found to be zero in F'. Since the manifold 
K'"'x R3 is a submanifold of R3nc3, it carries a natural Borel measure 5 given by 

dL(k1,. . . , k,, p ) =  n3"8(1 kj) dkl . . . dk, dp. (2.8) 
i 

Denoting by A the Lebesgue measure on R3", we may compare the Borel measures 
y(A) and 5 on K(")xR3. These measures are equivalent, with a Radon-Nikodqm 
derivative given by 

(dy(A)ldS)(kl,. . . , k,, p ) =  n-3/2m(P0)-1 n p P I k P ,  (2.9) 
i 

where we have used the convention that the quantities mi, pi, ki, m, p ,  are related by 
the equations (2.6) and (2.7). This very economical convention will be adopted 
throughout the remainder of this paper. As is easily shown, the following mapping is 
unitary: 

w: L ~ ( R ~ " ,  ojc2sj+1, A).+L~(K(")X R), oicZsj+l, i), 

(W+)(kl, * * * 9 k,, p )  

= [(dy(A)/dL)(ki, . , k,, p)1"20P'sf'(R(Pi9 A(P))-')+bi, . . . , pn). 
(2.10) 

The rep WU'W-' of 9 x . . . X 9 has a rather complicated form, which will not be 
written down. However, the restriction of W0'W-l  to the diagonal subgroup 
{ ( g l ,  . . . , g n ) E  9": gl = g2 = . . . = g n }  attains a rather transparent form. For the sake 
of simplicity, let us denote this rep of 9 by U, just as the n-particle rep that we started 
with. We have 

(2.11) 
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Due to this structure, the rep U is easily decomposed into a direct integral of 
irreducible reps (2.3). Thus the mapping W has essentially solved the task for 9 that is 
solved for the rotation group by the Clebsch-Gordon coefficients. 

Finally, let us relate the definition of W with Mackey’s theory of induced 
representations (cf Mackey 1952 and the books by Warner 1972 and by Kirillov 
1976). The rep U,,,,$ in (2.3) may be considered as being induced by the rep V,,,,s of 
9 = {(a, A )  E 9 : A E SU(2)) given by Vm,s(a, A )  = exp(ima0)D‘”(A). Therefore, the 
rep 0 = OiU,,,i,si of 9 X . . . x 9 is induced by the rep =OiV,,,i,, of 9 x . . . x 9. The 
intended effect of W is to transform 0 such that its restriction to the diagonal 
subgroup is easily identified as being induced by a rep of 9. From (2.11), we see that 

(V (u ,  A)+)(kl, , . . , k,) = exp(iaO C j  kp) O,dSJI’(A)rJ/(A-’kl, . . . , A-’k,). The reps 
that are obtained by restricting an induced rep to a closed subgroup are analysed in 
Mackey (1952, theorem 12.1). Our transformation W is rather naturally inferred 
from Mackey’s analysis if one notes that each coset 9g, g E 9, contains just one pure 
Lorentz transformation A @ )  (cf the appendix) and, hence, determines uniquely the 
three-vector wP@/m) as a consequence of which the double coset space in Mackey’s 
theorem may be identified with the space of SU(2)-orbits in K‘”’ (the action being 
given by B ( k l ,  . . . , k , ) = ( B k l , .  . . , Bk,)). 

the inducing rep may be chosen as the rep Q being given on L2(K‘”’, OiCzsjc1 ) by 

3. Definition of internal observabies, and their properties 

The form (2.11) of U suggests the definition of some operators that ‘do not act on p ’  
and, therefore, commute with the operators P and X (cf (2.1) and (2.2)), which can 
easily be seen to satisfy 

(exp(ia P)+)(k l ,  . . . , k,, P) = exp(ia. p)rJ/(kl, . . . , k n ,  PI, 
(exp(ia X)+)(k l ,  . . . k,, p )  = +@I, . . . , k,, p - a ) .  

(3.1) 

(3.2) 
The definition of internal momenta K1, . . . , K, and internal spins 21, . . . , 2, accord- 
ing to the following equations is conventional: 

(3.3) 

(3.4) 

(exp(ia - Kj)+)(kj, . . . , k,, p ) ~  exp(ia. kj)+(kl, . . . , k,, P), 
(exp(2ia. 2i)+)(k1, . . . , k,, p >  E Ol.D(Sl)(eisli~a)rJ/(k~, . . . , k,, p ) .  

Considering (3.1) and (3.2) and remembering that the kl, . . . , k, are restricted by the 
condition Zi kj = 0, we easily guess how to define Ri such that the quantum mechanical 
analogue of (1.3), particularly [RP, K f ]  = i6pB(Sil - P I ) ,  is satisfied: 

(exp(ia Rj)+)(kl,  . . , k,, P) +(ki -djia, . . . , k, -djna, p )  
with 

(3.5) 

By the definitions (3.3k(3.5), we have for any a E R3 three self-adjoint operators 
a .  Ri, a .  Ki, and a .  Zi, the first and the second of them being clearly unbounded; they 
all are internal operators in the sense that they commute with X and P (i.e. with all 
operators b .  X, b .  P, b E R3). We shall call Ri the internal position of the jth particle. 
For notational convenience, we introduce abbreviations for some operators that are 
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derived from momenta and energies: 

w = PM-', U = P(M + E)-', 
2 1/2 v, = K,.(K? )-', K P = ( m f + K j )  , (3.6) 

E .  = EF- ' ,  W, = v, -1 /A,&, 1 -  
I 

To get rid of domain problems in writing down algebraic relations between unboun- 
ded operators, we search for a subspace 9 c L2(K'"'X R3, OjCZs~+' , l )  such that we 
have for all operators introduced up to now: 

( a )  9 c domain A ;  
( b )  A9c9; 
( c )  A is essentially self-adjoint on 9. 

We choose for 9 the space of all infinitely differentiable Oi@2SI+1-valued functions on 
K(")X R3 with compact support (K'"'x R3 should always be considered as a differen- 
tiable manifold with the global chart 4 :  K(")x  $I3+ R3", 4(k1,. . . , k , , p ) =  
(k2, . . . , k,, p ) ) .  Then, the properties ( a )  and ( b )  are rather obviously satisfied, and ( c )  
is easily proved by theorem VIII.l l  of Reed and Simon (1972) since the unitary group 
is explicitly given for all operators under consideration. On the space 9, the 
definitions (3 .3t(3.5 ) imply 

(a * K,4)(kl ,  . . . ,  km p ) = a  kj$(kl, . * 3 km P), 

(U Rj+)(kl, . . . , k,, p)' -i--$(kl - A d j l ~ ,  . . , k, -Adjna, ~ ) I A = o ,  d 
dA (3.7) 

d 
dA 

( a .  z j+>(k l ,  . . . , IC,, p )  = (2i)-'- OI,D(S~)(eAi*~P~o)J/(kl, . . . , k,, p)IA=o. 

By straightforward calculation we verify on 9 

J = X X P + C (Zj +Rj X Kj). (3.10) 

These equations are the strict quantum mechanical analogues of the classical equa- 
tions (1.2), (1.3), and (1.7) (note that only spin-zero particles are considered in 0 l). 

Further, we obtain the following laws of motion (with U(t)= U(t, 0, l)), which are 
counterparts of (1.8) and (1.9): 

i 

U ( t )a .  KjU(-t) = U .  Kj, 
U(t)a . RjU( - t )  = U .  Ri + tME-'a. W,, 

U(t)a . zjU(-r) = a .  zj, (3.11) 

(3.12) 

U(t)a . PU(-r) = a .  P, (3.13) 

The Euclidean transformation properties of K;, Rj, and Zj are those of translationally 

U(t)a .  XU(- t )=  U .  X+ tu. PE-'. 
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invariant vector operators, i.e. we have for all g = (0, b, B ) ,  b E R3, B E SU(2) the 
equations 

U(g)a. AU(g)-' = a ' .  A with a' = Ba, (3.14) 

where A denotes any of the operators Kj, R,, and Zb 
Now we are interested in the connection between the internal operators Kj, Ri, Zi, 

and the individual particle operators Pi, Xi, Si. Since the realisations (2.4) and (2.11) of 
U that give particular simple forms to these operators are connected by the explicitly 
known transformation (2. lo), there is no fundamental difficulty in calculating the 
internal operators in terms of the individual ones. However, the transformation W is 
rather complicated so that the differentations that are contained in the definition of Ri 
and Zj produce an avalanche of terms in the calculation. As a result we find that the 
following equations hold on 9: 

Kj=Pj-  W(Ej-U.Pj) .  (3.15) 

with 

~ E x / + i [ ( x ~ - z ~ ~ i ) .  W V / + V ~ W .  x / - c E ~ x ~  )I +$(x/. W V + V W . X / )  
i ( i  

+a:u+a:vI+a:s1x  U+aQP1xU 

with 

a :  =alS/.(Plx W )  with a1 = [(mt +El)(mr +K?) ] - ' ,  (3.16) 

~ : ~ ~ : + C [ € ( m i + ~ i ) l - ' ~ i . ( ~ i x  w), 

a ;  Ears/. W. 

i 

a:  =a& with f l r  = mr +€I  + K? + mM-'€, 

2, = s, - ai [ (Pj x U )  . (Pi x W)Sj - (Pj x U )  . sj (Pi x W )  + pi (Pi x U )  x Si]. (3.17) 

For the two-particle system, a relative position operator was constructed by Osborn 
(1968). Comparing (3.16) with equation (3.33) of Osborn, we find that our operator 
R1 -RZ coincides exactly with Osborn's operator r. Moreover, Osborn's method can 
readily be generalised for n > 2 to yield our operators Ri. Therefore, we consider the 
following rep D of the (multiplicative) group of positive numbers 

( w ) 4 ) ( k l ,  . . . k,, PI= r3%kl, . . . , k,, rp),  (3.18) 

which obviously satisfies D(r)PD(r)-' = rP and D(r)R,D(r)-' = Ri. Now it can be 
shown that we have for all 4 E 9 

D(r) (x j -C I F A ) D ( ~ ) - ~ +  +Ri+lt asr+O. (3.19) 

Since D(e-") = exp[ai(X. P +  P .  X)/2], this is just the limit procedure used by 
Osborn to obtain from an operator that commutes with P a new one that commutes 
with P and X and approximates the first one if applied to states with a small 



Position operators for free relativistic particles 673 

expectation value of P. From a mathematical point of view, Osborn's treatment is 
obscured by an erroneous statement concerning the existence of an isometric limit of 
D(e-") as a +m; as a matter of fact, this limit does not exist in the strong operator 
topology and is the zero operator in the weak operator topology. 

4. Definition of impact positions 

In the preceding section we have constructed a relativistic quantum mechanical 
analogue Rj of the classical internal position rj introduced in 0 1. In the present 
section we shall construct the analogue Qj of the classical quantity qj that was 
introduced in 0 1 as the internal position of the jth particle at the instant of maximal 
particle concentration. As in the preceding section, this construction will actually not 
proceed by analogy but by guess, based on the suggestive form (2.11) of the rep U. Let 
us recall that the guiding principle in defining Rj was to fulfil prescribed commutation 
relations with Kj; now we search for an operator Qi that is as closely related to Rj as 
possible but commutes not only with P and X (as Rj)  but also with M and hence with 
E. Thus, Qj shall be a constant of motion as is the classical qj. 

Since U .  Rj is a derivative along the constant vector field with 

ra*j(k)= (Udjl, . . . , Udj") for all k E K'"', (4.1) 

it is a rather natural idea to deform this vector field such that it becomes tangent to 
each of the surfaces 

The derivative associated with this new vector field then will clearly commute with M. 
Obviously, there are many ways of carrying out such a deformation, but that to be 
described subsequently seems to be the most simple one. First we note that, the 
manifold K'"' being a linear space, the tangent space T(k) at k E K'"' coincides with 
K(n), For the tangent vector U =(u1, . . . , U,,)€ T ( k )  to be tangent to S, (with m 
chosen such that k E S,), we easily find the necessary and sufficient condition 

uj. k,/kp = 0.  
i 

(4.3) 

This suggests we consider T(k) as an inner product space (hence K'"' as a Riemann 
manifold) with the following k-dependent inner product: 

(u~u)=C uj. Uj/kp for all U, U E T(k). (4.4) 
i 

Then the tangent space of S, at k E S, is simply {U E T(k): ( ~ ( k )  = 0). Thus, as S, was 
a sphere, the tangent space of S,,, at k is orthogonal to the radius vector k. Therefore, 
it is geometrically appealing to project r&j on the sphere-like surface S, along the 
direction of k: 

4a,j(k = 1a.j (k ) - k (ra,j(k )I k )/(k Ik >. (4.5) 
In fact we have (q.&)lk) = 0, hence q 4 j ( k )  is tangent to S, for k E S,. Therefore, 4 
may be considered as a smooth vector field on any of the submanifolds S,; since these 
are compact manifolds, q is complete on each S,,, (see Abraham 1967, theorem 7.14). 
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Since any k E K'"j(0) belongs to just one S,, 4 is complete on K'"j{O} and by 
Abraham (1967, p 41), there is a one-parameter group of diffeomorphisms of 
K'"j(0) such that 

d4a,.i(A )(k )/dA I A =O = 4a,j(k) for all k E K'"j{O}. (4.6) 

Now we define a one-parameter group of unitary operators on L*(K'")X 
R3, OjCSic1, 4') by 

(exp(iAa Qi)(Ir)(k P)' aa. i (k  k)(Ir(4a,i(-A )k P ) ,  (4.7) 

where the numerical factor a is determined by a Radon-Nikod9m derivative: 
a a , j ( A ,  k)= [(d4a,j(-A)l'/dl')(k)]"2 with d l ' (k )=n3 '2S(Cjk , )  dkl . . . dk,. Since this 
factor becomes singular at k = 0, it is clear that not every (Ir E 9 belongs to the domain 
of the operator a .  Qi. As a substitute for $3 we define 

go = {(Ir E 9: 3~ > O(Vk E K'"', p E R3((Ir(k, p )  = 0 whenever 

cj [(mf + kf)'i2 - mi] > E ) ) } .  (4.8) 

This space is obviously invariant under a .  Qj and exp(ia. Qj)  (and a .  Ri, but not 
under exp(ia . Ri)). Hence a .  Qj is essentially self-adjoint on go. In the remainder of 
this paper, any operator equation should be understood as an equation on go if it 
contains Qj, and as an equation on 9 otherwise. For (Ir E 90 we obviously have 

i(a Q j ( I r ) ( k  ~ ) = d a a , j ( &  k)/dA I~=o(Ir(k, p)+d(Ir(k -Aqa,j(k), p)/dAIA=o; 

since the first term on the right-hand side gives a skew-Hermitian contribution to Qi, 
the Hermitian part of the second term equals the left-hand side. Performing the 
A-differentation we obtain (see (3.6) for notation) 

For convenience, we define the non-Hermitian operator 

(4.10) 

Thus Qi is expressed in terms of RI, Kl, VI in just the same way as the classical 
non-relativistic qj is expressed in terms of r ~ ,  kr, and U/ (note X I  , u ~ u l =  0, so that the 
classical analogue of Wi is q)t. For n = 2, we obtain the simple expression 

Q ;  -0; =R1-R2-e[e . (R1-R2)]  with e :=K1/IK1/. (4.11) 

This is just the equation for the minimal distance of two trajectories, one passing 
through RI with direction e, the other passing through R2 with direction -e, i.e. the 
equation for the impact parameter of two particles moving with any (constant) velocity 
along these trajectories. By (4.9) and (3.9), we easily find 

(4.12) 

Contrary to the corresponding situation for the Ri, the commutator [ay, Qf] does not 

t The author's actual method of proceeding was to introduce the operators Ri and Qi first and then to 
consider the classical quantities ri and qi in order to understand the quantum mechanical ones. 
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vanish even for j = 1, as is rather evident since the Qj are derivatives along non- 
constant vector fields. Although this commutator can be calculated straightforwardly, 
the result is rather complicated and shall not be written down. Correspondingly to 
(3.8) and (3.10), we have 

C PiQj = 0, (4.13) 
i i 

The invariance properties of the Qi are the following. For any a E R3 and j E 

11, . , . , n }  the self-adjoint operator U .  Qj commutes (in the strict operator sense) with 
the mass operator, with X, and with P, hence with all translation operators U(a,  l), 
a E R4. With respect to rotations, equation (3.14) is valid with Qj instead of A.  Now 
the rotationally invariant operators Qi . QI + HC, Kj . QI + HC, and Zj . QI can be 
defined on go and are easily shown to commute formally (i.e. on Bo) with all 
generators of U, moreover then can be shown to commute on 90 with U ( g )  for all 
g E 9. Probably, the closures of these operators are self-adjoint operators that com- 
mute with U ( g )  for all g E 9. However, this is not yet proved. 

J =X X P+C (Zj + Q; X Kj). 

Finally, a slight transcription of (4.10) may be instructive: 

Ql = Rj - i[M, Rj]  T with T = Z C l , R l  (4.14) 
I 

where the equation [ T, MI = i should be noted. The natural question, whether T, as in 
the classical case, may be interpreted as an observable describing the (proper) time of 
maximal particle concentration, shall not be discussed here. 

5. Spatial separation properties of the RI and Q, 

In this section we shall investigate how the unitary operator exp(ib . PI) (that effects a 
displacement of the lth particle by a vector b) transforms the position operators Ri and 
Qi. Thus we shall reveal a strange property of these operators that may be roughly 
expressed as follows. Both the internal position and the impact position of the jth 
particle depend essentially on the position of any of the other particles, even if this 
particle is arbitrarily far away. The reasons for this lack of spatial separability are 
similar to those for the corresponding defect of barycentric wave operators (i.e. wave 
operators (= Mprller operators) that commute, like Qi and Rj, with the operators X 
and P of the free-particle rep associated with the asymptotic states) that was pointed 
out by Mutze (1978). 

From the last equations of (2.7) we easily infer 

PI = K1 + (K? + U. K1)W. (5.1) 
Then, we obtain from the second equation of (3.7) and from (3.9) by a straightforward 
calculation 

[RT, Pf’] = idil[S,B + (VB + U ” )  W’] - i Wp W’E~. 

exp(-ib . &)a. Rj exp(ib . PI) = a .  Rj - i[b . PI, a.  Rj] .  

(5 .2 )  

(5.3) 

(5.4) 

Since the right-hand side of this equation commutes with PI, we expect 

In fact, this equation can be proved. Therefore, we have 

exp(-ib .  PI)^ . Rj exp(ib . PI) = U .  Rj - djla. Bl(b)+ U .  Wjb. WEI 
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with 

&(b)= b +(Vl+ U ) b .  w. 
Together with (4.9), this equation yields 

exp(-ib . & ) U .  Qj exp(ib . Pi) = U .  Qj -dj@ &(b)- U .  W,( Ki . V,) Ki . Bi(b). 
- 1  

i 

( 5 . 5 )  

The strange feature of the Rj announced at the beginning of this section becomes 
evident from the following equation holding for I # j ,  1 # k: 

exp (-iAb . &)a.  (RI - Rk) exp(iAb . Pi)4 = U .  (Rj - Rk)4 + h a .  (V, - Vk)b. WE/$. 

(5.6) 

Although the second term on the right-hand side can be made arbitrarily small for any 
fixed value of A by choosing a CC, with a sufficiently small expection value of P2,  this 
term will always dominate (even diverge) if A tends to infinity. Thus, removing one 
particle to infinity affects discontinuously the internal distance between any pair of the 
remaining particles. A similar conclusion is valid for the distance Qj - Qi. In this case, 
however, that conclusion is not astonishing since, by removing one particle to infinity, 
the instant of impact tends to infinity too. 

6. Concluding remarks 

Here let us formulate some conjectures that arose from the preceding investigations. 
Therefore, we consider the von Neumann algebras A I ,  A2, and A3 of those bounded 
operators that commute respectively with {P, X}, {P, X, M}, and {P, X, M, J } .  The 
members of AI ,  A2, and A3 correspond respectively to internal observables (i.e. to 
observables that are not sensitive to the CM motion of the system), to time-indepen- 
dent internal observables, and to PoincarC invariant observables. Now the announced 
conjectures say that the algebra Ai, i E {1,2,3}, is generated by the following set Gi of 
self -adjoint operators: 

G I  = {Kip, RP, Zp: j E (1, . . . , n}, a E {1,2,3}}, 

G2={KP, 07, Zip: j E { l , .  . . , n}, a ~{1,2 ,3}} ,  
G ~ = { Q ~ . Q / + H c ,  Qj.Ki+HC, Qj.Zi,Kj.Ki, Kj .Zi ,Zj .&:j ,  I€{1, . . . ,  n}}. 

Finally, we recall that the operator a .  Qj was constructed from a vector field on K'"' 
being tangent to the submanifolds S,. All vector fields on K'"' with this tangent 
property form a (infinite-dimensional) Lie algebra. The investigation of suitable 
finite-dimensional compact subalgebras of this Lie algebra may well be expected to 
yield useful new PoincarC invariant quantum numbers for classifying n-particle states. 

Acknowledgments 

I am grateful to Professor H J Meister, Dr M Schaaf, and Dr D Castrigiano for 
informative discussions and valuable suggestions. 



Position operators for free relativistic particles 677 

Appendix 

Here we shall fix some notations and conventions concerning the PoincarC group that 
are not explained in the main text. The quantum mechanical PoincarC group $3’ 
(without inversions) is the topological space R4XSL(2, C )  together with the law of 
multiplication (a ,  A ) ( a ’ ,  A’ )  = (a  + A a ’ ,  AA’), where the action of the matrix group 
SL(2, C )  on R4 is given by 

(Ax)’’ =iTr c”A(a0xo+x .  a ) A *  

for all x =(xo, x’ ,  x2, x3)3(x0,  X )E  R4, p ~ ( 0 ,  1 , 2 , 3 } ,  where co is the unit element in 
SL(2, C) and a = (cl, c2, c3) is the tripel of Pauli matrices. For any p E R4 with p o  > 0 
and p . p = (Po)’ - p 2  > 0 we define the positive Hermitian matrix A @ ) €  SL(2, C )  by 

0 - 1  / 2  - exn.u/2 A ( p ) = [ ( m + p o ) ~ o + p . a ] [ 2 m ( m + p  )] - 7 

where m = (p . p ) l l 2 ,  n = p / l p l ,  tanh x = I p ( / p o .  We have A(p)-’p = (m,  0).  For any p 
of this kind and any A E SL(2, e), the Wigner rotation R(p, A)E SU(2) is defined by 

For A E SL(2, C )  and B E SU(2) we have R(p, A B )  = R(p, A ) B ,  particularly R(p, B )  = 
B. For the Lorentz transformation A @ )  we have 

R(q, A b ) ) =  [ l + u o +  w o + u .  w -i(o x w). a ] [ 2 ( 1  +uo)( l  + w o ) ( l + u .  w ) ] - ’ / ~  

with U =q(q . q ) - l f 2 ,  w = p ( p .  p ) - l / ’ .  

R(p, A)=A(p)-’AA(A-’p).  
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